首页> 外文OA文献 >Robust fft-based scale-invariant image registration with image gradients
【2h】

Robust fft-based scale-invariant image registration with image gradients

机译:基于fft的基于稳健的尺度不变图像配准和图像梯度

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We present a robust FFT-based approach to scale-invariant image registration. Our method relies on FFT-based correlation twice: once in the log-polar Fourier domain to estimate the scaling and rotation and once in the spatial domain to recover the residual translation. Previous methods based on the same principles are not robust. To equip our scheme with robustness and accuracy, we introduce modifications which tailor the method to the nature of images. First, we derive efficient log-polar Fourier representations by replacing image functions with complex gray-level edge maps. We show that this representation both captures the structure of salient image features and circumvents problems related to the low-pass nature of images, interpolation errors, border effects, and aliasing. Second, to recover the unknown parameters, we introduce the normalized gradient correlation. We show that, using image gradients to perform correlation, the errors induced by outliers are mapped to a uniform distribution for which our normalized gradient correlation features robust performance. Exhaustive experimentation with real images showed that, unlike any other Fourier-based correlation techniques, the proposed method was able to estimate translations, arbitrary rotations, and scale factors up to 6.
机译:我们提出了一种基于FFT的稳健方法,用于尺度不变图像配准。我们的方法两次依靠基于FFT的相关性:一次在对数极傅立叶域中估计缩放和旋转,一次在空间域中恢复残差平移。基于相同原理的先前方法并不可靠。为了使我们的方案具有鲁棒性和准确性,我们引入了一些修改方法,使这些方法适合于图像的性质。首先,我们通过将图像函数替换为复杂的灰度边缘图来导出有效的对数极傅立叶表示。我们表明,这种表示既可以捕获显着图像特征的结构,又可以规避与图像的低通特性,插值错误,边界效果和锯齿有关的问题。其次,为了恢复未知参数,我们引入归一化梯度相关性。我们表明,使用图像梯度执行相关性,将异常值引起的误差映射到均匀分布,对于该分布,我们的归一化梯度相关具有强大的性能。对真实图像的详尽实验表明,与任何其他基于傅立叶的相关技术不同,该方法能够估计平移,任意旋转和比例因子,最高可达6。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号